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Abstract
Matrix quasi-exactly solvable operators are considered and new conditions
are determined to test whether a matrix differential operator possesses one or
several finite-dimensional invariant vector spaces. New examples of (2 × 2)-
matrix quasi-exactly solvable operators are constructed with the emphasis set
on PT -symmetric Hamiltonians.

PACS numbers: 03.65.Ge, 11.30.Na

1. Introduction

Several problems in quantum physics lead to the mathematical challenge of determining the
spectrum of a linear operator defined on an appropriate space of functions. Unfortunately, the
relevant spectrum can be computed exactly (i.e. by means of algebraic methods) only in a few
particular cases. In the last few years, an intermediate class of operators has been discovered
[1–4]: the quasi-exactly solvable (QES) operators, for which a finite part of the spectrum can
be computed algebraically.

Since this paper is largely devoted to QES operators, we recall the definition which is
used in the recent literature [5]. Let a one-dimensional operator of the form H = −∂2

x + V (x)

be essentially self-adjoint on an Hilbert space H; H is said quasi-exactly solvable if it leaves
invariant one (or more) non-trivial finite-dimensional subspace M of H, in other words if

M = span{φ1, . . . , φn, φj ∈ H} : Hφj ∈ M, j = 1, . . . , n.

This definition can be naturally extended to more general contexts, e.g. to operators depending
on several variables or to matrix differential operators.

Several QES operators are equivalent to operators preserving a ring of polynomials of
given degree in a variable z. By equivalent, it is understood that a change of function (so-called
gauge transformation, depending on an invertible function µ(x)) and/or a change of variable
y = y(x) have to be performed on the initial Schrödinger operator H(x) in order to reveal its
invariant vector space in terms of a space of polynomials. These QES operators are closely
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related to the representations of the SL(2,R) Lie algebra [1]; however, several QES operators
have been constructed beyond the framework of the Lie algebra [5].

In the case of coupled equations, where the operators appear in the form of a matrix
whose components are differential operators, the construction of the gauge transformation
setting the operator in a form which manifestly preserves a vector space where components
are polynomials, turns out to be more tricky (see, e.g., [6, 7]).

In the second section of this paper, we establish a set of algebraic conditions to test
whether (n× n)-matrix-valued operators of a certain type preserve a vector space of n-uple of
polynomials with component of definite degrees. We work with 2×2 matrices but the method
can be extended to higher dimensions. This new method was tested on all QES-known matrix
equations. In the other sections, we take advantage of these conditions and construct several
new families of QES systems where the emphasis is set on PT -symmetric invariance. This
original issue for the mathematical framework of quantum mechanics was proposed in [8] and
developed in several subsequent papers, but to our knowledge it has not been studied in the
context of coupled systems of Schrödinger equations.

In section 3, we propose several matrix extensions of the Razhavi operator. Scalar
Razhavi-types of potentials were considered recently to produce examples of PT -invariant,
non-Hermitian potentials with real eigenvalues [9, 10]. Here, we develop matrix extensions
of them both with trigonometric and hyperbolic potentials.

In section 4, we obtain a matrix generalization of the QES example of the PT -symmetric
Hamiltonian with an anharmonic potential of degree four [8] and reconsidered recently [11].
Finally, in section 5, we show how the problem of section 4 can be transformed into a system
of recurrence equations in the spirit of [12].

2. Matrix QES operator

In this section, we propose a test to check whether a family of (2 × 2)-matrix differential
operator, H, preserves a vector space whose components are polynomials of suitable degrees
in x. We consider the case where the components of H are combinations of the derivatives
dn/dxn with polynomial coefficients. More precisely, we study the family of operators H
which can be decomposed according to

H = H1 + H0 + H−1 + H−2, Hs =
(

Âs bsx
δ+1−s

csx
δ′+1−s B̂s

)
. (1)

Here Âs, B̂s represent homogeneous differential operators of degree s, i.e. they transform the
monomial xm into a monomial proportional to xm+s for m ∈ N; bs, cs, are arbitrary constants
and δ, δ′ are integers. It is also understood that the off-diagonal components of H do not
contain negative powers of x.

Now, we try to obtain the conditions of the different constants entering in H, such that
this operator possesses an invariant subspace of polynomials of the form

V = span

{(
pn

qm

)
, n,m ∈ N

}
, (2)

where pn, qm denote polynomials of degree n,m in the variable x. Requiring, for physical
motivations, H to contain effectively derivatives up to second order, we have a first necessary
condition:

Condition 1. V can be an invariant vector space of H only if

δ + δ′ = 2, n − m = δ − 1 for δ = 0, 1, 2. (3)



PT -symmetric, quasi-exactly solvable matrix Hamiltonians 13065

This condition can be demonstrated just by a calculation. If it does not hold, then the operator
H is trivial, or not of a form suitable for quantum mechanics. However the condition (3) is
NOT sufficient.

In order to obtain necessary and sufficient conditions, it is useful to define some notations.
Let us consider a generic vector in V

ψ =
(

α0x
n

β0x
n−δ+1

)
+

(
α1x

n−1

β1x
n−δ

)
+ · · · , (4)

where αj , βj are arbitrary complex parameters and let the operator H acts on this vector. The
components of the vector Hψ are then polynomials in x whose components are linear in the
constants αj , βj . As a consequence the vector Hψ can be decomposed uniquely according to

Hψ = diag(xn+1, xn−δ+2)M1

(
α0

β0

)

+

(
diag(xn, xn−δ+1)M̃1

(
α1

β1

)
+ diag(xn, xn−δ+1)M0

(
α0

β0

))

+ terms of lower degrees in x. (5)

This defines in particular the constant 2 × 2 matrices M1, M̃1 and M0. They can be computed
explicitly after a straightforward calculation once the explicit form of H is chosen. The
following result is easily obtained from (5).

Condition 2. The necessary and sufficient conditions for H to admit V as invariant vector
space are

(i) M1

(
α0

β0

)
=

(
0
0

)
(6)

(ii) M̃1

(
α1

β1

)
+ M0

(
α0

β0

)
∝

(
α0

β0

)
, (7)

where the second condition has to be fulfilled irrespectively of the values α1, β1.
The condition (i) implies det M1 = 0 and the vector (α0, β0)

t to be a zero-eigenvalue
eigenvector of M1. This fixes the relative coefficient of the terms of highest degree in V (see
equation (2)). The condition (ii) is equivalent to the following conditions:

(ii′) M0

(
α0

β0

)
= �

(
α0

β0

)
, (ii′′) M̃t

1

(−β0α0
) =

(
0
0

)
, (8)

where Mt means the transpose matrix of M, (ii′) and (ii′′) are in general easier to implement
than (ii).

In summary, conditions (i), (ii′), (ii′′) allow to construct in a systematic way the invariant
vector spaces for operators of the form (1), and then define criteria for these operator to be QES.
The conditions on the coupling constants obtained, e.g., in [7, 14, 15] can be rediscovered along
these lines, emerging now in terms of elementary manipulations on the matrices M1, M̃1,M0.

In order to illustrate this method, we reconstruct the invariant vector space of the QES
Hamiltonian [14, 15]

H(y) = − d2

dy2
112 + M6(y), (9)

the potential M6(y) is a (2 × 2) Hermitian matrix of the form

M6(y) = {
4p2

2y
6 + 8p1p2y

4 +
(
4p2

1 − 8mp2 + 2(1 − 2ε)p2
)
y2

}
112

+ (8p2y
2 + 4p1)σ3 − 8mp2κ0σ1, (10)

where p1, p2, ε are constants, m is an integer and σa, a = 1, 2, 3, denote the Pauli matrices.



13066 Y Brihaye et al

The ‘gauge transformation’ of H(y) with a factor

φ(y) = yε exp −
{

p2

2
y4 + p1y

2

}
, ε = 0, 1 (11)

and the change of variable x = y2 leads to an operator H̃ (x)

H̃ (x) = φ−1(y)H(y)φ(y)|y=√
x, (12)

which reveal the invariant subspace of H. Defining J+(m) ≡ x2dx − mx and setting for
simplicity ε = 0, p1 = 0, we find

H̃ (x) =
(

− 4x
d2

dx2
− 2

d

dx

)
112 + 8p2

(
J+(m − 2) 0

0 J+(m)

)
− 8mp2κ0σ1. (13)

This operator can be decomposed along the lines of equation (1),

H̃ (x) = H1 + H0 + H−1, (14)

with

H1 = 8p2

(
J+(m − 2) −mκ0

0 J+(m)

)
, H0 = 0,

H−1 =
(

−4x
d2

dx2
− 2

d

dx

)
112 − 8mp2κ0

(
0 0
1 0

)
.

(15)

In this case, (H1)12 is a constant (i.e. δ = 0), while (H1)21 = 0, the matrix operator H0 is zero.
The invariant vector space is of the form

ψ =
(

α0x
m−1 + α1x

m−2 + · · ·
β0x

m + β1x
m−1 + · · ·

)
. (16)

The determinant of the matrix M1 is trivially zero and the condition (i) implies α0
β0

= mκ0.
The first conditions (ii′) are trivial since M0 = 0 (as a consequence of H0 = 0). Finally, the
second condition (ii′) can be easily checked:

M̃t
1

(−β0

α0

)
= −8p2

(
0 0

mκ0 1

) (−β0

α0

)
=

(
0
0

)
. (17)

In the following section, we will present several examples of QES matrix operators based on
extensions of the scalar Razavi potential.

3. PT -invariant non-Hermitian matrix Hamiltonian

In [9, 10], PT -invariant models based on the scalar Razhavi potential are analyzed with the
emphasis set on the reality properties of the spectrum. This can be done partly in an analytical
way because the potentials considered are QES. The authors considerd both hyperbolic and
trigonometric cases invoking an anti-isospectral transformation [13] to relate the spectra of
both types. Here, we will consider matrix extensions of these equations and see that several
form of the non-diagonal elements H12 and H21 can lead to QES operators. We will first
consider periodic potentials, formulated in terms of trigonometric functions. The cases of
potentials involving hyperbolic functions will be presented afterwards.
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3.1. Trigonometric case

From the unidimensional potential studied in [9], we will build a family PT -invariant matrix
Hamiltonian and use the technique developed in the previous section to check its quasi-exactly
solvability. We start from a general Hamiltonian of the form

H =
(

− d2

dx2 + (ρ cos 2x − iM)2 + A H12

H21 − d2

dx2 + (ρ cos 2x − iM̃)2 + Ã

)
, (18)

where ρ is a free real parameter and A, Ã,M, M̃ are constants to be specified. There are
several forms of H12,H21 which lead to QES operators. One can assume M̃ > M without
loosing generality. The general properties of the diagonal component of H and of trigonometric
functions will reveal that QES operators can be constructed by choosing H12 according to one
of the following form:

H12 = C cos 2x + D or H12 = C cos x or
(19)

H12 = C sin x or H12 = C cos x sin x

and similar forms, respectively, for H21 with, however, a priori independent coupling constants
for C and D.

In order to reveal the algebraic properties of this family of operators, it is convenient to
perform a first gauge transformation according to

H̃ = e−θ cos 2x

(
z−ε(1 − z)−φ 0

0 z−ε̃ (1 − z)−φ̃

)
H eθ cos 2x

(
zε(1 − z)φ 0

0 zε̃(1 − z)φ̃

)
,

=
(

H̃ 11 H̃ 12

H̃ 21 H̃ 22

)
, (20)

where z = (cos 2x + 1)/2. Further choosing the parameter θ , according to θ = i ρ

2 the
components of H̃ are obtained:

H̃ 11 = −4z(1 − z)
d2

dz2
+ 2(2z − 1 − 4(1 − z)ε + 4φz)

d

dz
+ ρ2 − M2 + 8φε + 2ε + 2φ + A

− 8iρ

(
z(1 − z)

d

dz
+ ε(1 − z) − φz +

M − 1

4
(2z − 1)

)

H̃ 12 = zε̃−ε(1 − z)φ̃−φH12,

H̃ 21 = zε−ε̃ (1 − z)φ−φ̃H21,

H̃ 22 = −4z(1 − z)
d2

dz2
+ 2(2z − 1 − 4(1 − z)ε̃ + 4φ̃z)

d

dz
+ ρ2 − M2 + 8φ̃ε̃ + 2ε̃ + 2φ̃ + Ã

− 8iρ

(
z(1 − z)

d

dz
+ ε̃(1 − z) − φz +

M̃ − 1

4
(2z − 1)

)
(21)

and where we have neglected the singular terms of the form

1 − z

z
2ε(2ε − 1) +

z

1 − z
2φ(2φ − 1) (22)

in H11 (and a similar terms with ε → ε̃ , φ → φ̃ in H22) since we assume from now on

ε(2ε − 1) = φ(2φ − 1) = ε̃(2ε̃ − 1) = φ̃(2φ̃ − 1) = 0. (23)

The different choices for H12 proposed in equation (19) now appear to be natural since
they will automatically lead to a polynomial expressions in z when the choice of the parameters
ε, ε̃, φ, φ̃ is done according to equation (23). In the following, we will analyze in detail the
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case H12 = C sin x cos x. The algebraization corresponding to the three other cases can be
done similarly.

In this case, the possible values for the parameters ε, ε̃, φ, φ̃ allow for four algebraization,
for the wavefunction ψ = (ψ1, ψ2), namely

type (i) : ψ = (pn, sin x cos xqn−1)

type (ii) : ψ = (pn−1 sin x cos x, qn)

type (iii) : ψ = (pn sin x, qn cos x)

type (iv) : ψ = (pn cos x, qn sin x),

where pn, qn, etc denote polynomials of degree n in the variable z.
Acting on an eigenfunction of type (i), the conditions for algebraic solutions are

ε = φ = 0, ε̃ = φ̃ = 1/2. The operator H̃ can then be decomposed according to the
prescription of section 2 leading to

H̃ = H̃ 1 + H̃ 0 + H̃−1, (24)

with

H̃ 1 =
(

8iρ
(
z2 d

dz
− (

M−1
2

)
z
) −Cz2

C̃ 8iρ
(
z2 d

dz
− (

M̃−3
2

)
z
)
)

(25)

H̃ 0 =
(

4z2 d2

dz2
+ (4 − 8iρ)z

d

dz
+ ρ2

)
112 +

(
A′ Cz

0 8z d
dz

+ Ã′

)
(26)

and

H̃−1 =
(

−4z d2

dz2 − 2 d
dz

0

0 −4z d2

dz2 − 6 d
dz

)
, (27)

with

A′ = A − M2 + 2iρ(M − 1), Ã′ = Ã + 4 − M̃
2

+ 2iρ(M̃ − 3). (28)

Using the parametrization corresponding to type (i) for the wavefunction, we can easily
obtain the form of the matrices M1, M̃1,M0 and the conditions on the parameters leading to
QES operators. In the present case, we get

M + M̃ = 4n, (1 − 4n2) + MM̃ = CC̃

16ρ2
. (29)

The condition involving M0 fixes the difference between the constants A, Ã, namely

A − Ã = M2 − M̃
2
. (30)

Considering the parametrization corresponding to type (ii) for the wavefunction, one obtains
easily ε = φ = 1/2, ε̃ = φ̃ = 0 and the corresponding operator H̃ can be computed. The
action of H̃ on an eigenfunction of the type (ii) leads, after some algebraic manipulations, to
the same QES conditions as in the previous case, namely equations (29), (30).

The wavefunctions of the types (iii) and (iv) correspond respectively to ε = φ̃ = 0, ε̃ =
φ = 1/2 and ε = φ̃ = 1/2, ε̃ = φ = 0. After some algebraic manipulations, we find the
corresponding operators H̃ together with the matrices M1, M̃1,M0. For these two types (iii)
and (iv) the QES conditions read

M + M̃ = 4n + 2, MM̃ − 4n(n + 1) = CC̃

16ρ2
, (31)
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Figure 1. The critical value of ρ as a function of the coupling constant M for the type (i) solution
and n = 2. The integers label the number of real algebraic eigenvalues.

while the condition involving M0 leads, again, to (30). A consequence of these results is that
the family of Hamiltonians (18) admits a double algebraization. The solutions of the types (i)
and (ii) are available if conditions (29), (30) are fulfilled; solutions of the types (iii) and (iv)
exist if conditions (31), (30) hold.

Example. In order to illustrate the results presented in this section, we studied the algebraic
eigenvalues of the operator (18) for the solution of the type (i) and for n = 1, 2. The invariant
vector space possesses 2n dimensions since the condition (5) imposes a constraint on the
polynomials pn, qn−1. In the case n = 1, we find

E = ρ2 + 2 ±
√

1 − ρ2(1 + M)2,

resulting in two real eigenvalues for |ρ| < 1/|1 + M|.
For n = 2, the four algebraic eigenvalues can be computed, in principle, but they take a

particularly simple form in the cases M = 1 and M = 3:

M = 1, E = 4 + ρ2(2 times), E = 8 + ρ2 ± 8
√

1 − ρ2

(32)
M = 3, E = 10 + ρ2 ±

√
9 − 4ρ2, E = 2 + ρ2 ± 2

√
1 − 4ρ2.

Solving the equation for generic values of M,ρ, we observed that the plane M,ρ is partitioned
into regions admitting 4, 2 or 0 real, algebraic eigenvalues. This is illustrated on figure 1 where
the critical values ρc are represented as functions of the coupling constant M. We observe that
one of the critical value ρc becomes infinite in the limit M → 1, in agreement with (32).

3.2. Hyperbolic case

The construction of the previous section can also be realized for the case where the
trigonometric functions entering into the potentials are replaced by their elliptic counterpart.
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The discussion of the different algebraizations turn out to be the same. Here, however, we
will study in detail the algebraic properties of the operator given by

H =
(

− d2

dx2 − (ρ cosh 2x − iM)2 C(cosh 2x − 1) + C̃

D(cosh 2x − 1) + D̃ − d2

dx2 − (ρ cosh 2x − iM̃)2

)
, (33)

where ρ is a free real parameter. One can assume M̃ > M without loosing generality. The
gauge transformation is performed as follows:

H̃ = exp(−θ cosh 2x)H exp(θ cosh 2x),

=
(

H̃ 11 H̃ 12

H̃ 21 H̃ 22

)
, (34)

On further substituting z = cosh 2x − 1 and fixing the constant θ by means of θ = iρ
2 , the

different components of H̃ read

H̃ 11 = −4z(z + 2)
d2

dz2
− 4(z + 1)

d

dz
− 8iρz

d

dz
− ρ2 − 4iρ

(
z2 d

dz
− M − 1

2
z

)
+ 2iρ(M − 1) + M2,

H̃ 12 = Cz + C̃,

H̃ 21 = Dz + D̃,

H̃ 22 = −4z(z + 2)
d2

dz2
− 4(z + 1)

d

dz
− 8iρz

d

dz
− ρ2 − 4iρ

(
z2 d

dz
− M̃ − 1

2
z

)

+ 2iρ(M̃ − 1) + M̃
2
. (35)

Decomposing now the operator H̃ according to equation (1), we obtain

H̃ 1 =
(

−4iρ
(
z2 d

dz
− Nz

)
Cz

Dz −4iρ
(
z2 d

dz
− Ñz

)
)

, (36)

where we posed N = M−1
2 , Ñ = M̃−1

2 . The form of H̃ 0 and H̃−1 can be obtained easily. Note
that (H̃ 1)12 = Cz and (H̃ 1)21 = Dz, so that δ = δ′ = 1 in this case. Referring to the above
general case and with

ψ =
(

α0z
n

β0z
n

)
+

(
α1z

n−1

β1z
n−1

)
+ · · · , (37)

we can write the vector H̃ψ according to

H̃ψ = diag(zn+1, zn+1)M1

(
α0

β0

)
+

(
diag(zn, zn)M̃1

(
α1

β1

)
+ diag(zn, zn)M0

(
α0

β0

))
+ · · · ,

(38)

where

M1 =
(−4iρ(n − N) C

D −4iρ(n − Ñ)

)
,

M̃1 =
(−4iρ(n − 1 − N) C

D −4iρ(n − 1 − Ñ)

)
,

M0 = −(4n2 + 8iρn + ρ2)11 +

(
4iρN + (2N + 1)2 C̃

D̃ 4iρÑ + (2Ñ + 1)2

)
.

(39)
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The three necessary conditions for the operator H̃ to have a finite-dimensional invariant
vector space can then be obtained in a straightforward way, the final results read

N + Ñ = 2n − 1, 16ρ2(n − N)(n − Ñ) + CD = 0,
β0

α0
= 4iρ(n − N)

C
, (40)

the equation involving the metric M0 imposes in turn

C̃β2
0 + 4(N − Ñ)(2n + iρ)β0α0 − D̃α2

0 = 0. (41)

As a result, assuming a choice of the integer n, we end up with a family of QES operators
labeled by the parameters N, ρ, C/D and C̃.

Different choices of the non-diagonal interactions H12 and H21 can be performed which
lead to similar conditions between the cosmological constants. We will discuss these
possibilities in the framework of periodic potentials (formulated in terms of trigonometric
functions) largely discussed in the following section.

4. PT -symmetric QES equation with polynomial potential

In this section, referring to the unidimensional operator studied in [11] we will construct a
PT -symmetric QES matrix Hamiltonian of the form

H = − d2

dx2
112 + M4(x), (42)

where M4(x) is the (2 × 2)-PT -symmetric matrix. The above Hamiltonian can be written in
terms of components and we choose the potentials of the form

H11 = − d2

dx2
− x4 + iAx3 + Bx2 + iCx + D,

H12 = ω,
(43)

H21 = ω̃,

H22 = − d2

dx2
− x4 + iÃx3 + B̃x2 + iC̃x + D̃.

In order to reveal the QES property, it is convenient to perform a gauge transformation
according to

H̃ = exp(−αx3 − βx2 − γ x)H exp(αx3 + βx2 + γ x). (44)

The gauged Hamiltonian then simplifies considerably if

α = − i

3
, β = −A

4
, γ = i

2

(
B − A2

4

)
, A = Ã, B = B̃ (45)

leading to the following expression:

H̃ = − d2

dx2
− 4βx

d

dx
− 2γ

d

dx
− 6α

[(
x2 d

dx
− mx

)
+ θxσ3

]
+ (−2β − γ 2) + diag(D, D̃) + ωσ+ + ω̃σ−, (46)

where the constants C, C̃ have been redefined according to C = i(6α(m−θ)+6α+4βγ ), C̃ =
i(6α(m + θ) + 6α + 4βγ ).

However, in this form, the occurrence of an invariant finite-dimensional vector space of
functions is not yet manifested in the sense that the operator H̃ does not preserve the vector
space (Pm−θ , Pm+θ )

t . In order to reveal such a possibility we can apply the technique of the
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first section. Here, we will follow [7] and perform a supplementary transformation on the

operator H̃ with the matrix S = (1 λ ∂
∂x

0 1

)
. After some calculations, we obtain finally the form

Ĥ = S−1H̃S,

=
[
− d2

dx2
+ Ax

d

dx
− i

(
B − A2

4

)
d

dx
+ D +

1

4

(
B − A2

4

)2]
− ω̃λ

d

dx
σ3

+ 2i diag(J+(n − 2), J+(n)) + diag

(
A

2
,−A

2

)
+ ω̃σ− − ω̃λ2 d2

dx2
σ+ (47)

with J+(n) ≡ x2 d
dx

− nx. Here, we have set m = n − 1, D̃ = −A + D, θ = 1 and fixed the
arbitrary parameter λ entering in the gauge transformation by means of ω = −2iλn.

The Hamiltonian Ĥ manifestly preserves the finite-dimensional space (Pn−2, Pn)
t . Note

that A,B,D, ω̃ are free real parameters, n is a non-negative integer and λ is a free complex
parameter.

5. Recurrence relations

In this section, we will express the formulation of the QES solution in terms of recurrence
relations to the case of the PT -symmetric matrix Hamiltonian. We will see that the eigenvalue
equation Hψ = Eψ leads to a system of four terms recurrence relations. The solutions ψ are
of the form

ψ(x) = exp

(
− ix3

3
− Ax2

4
+

i

2

(
B − A2

4

)
x

) (∑∞
k=0 Pk(E)xk∑∞
l=0 Ql(E)xl

)
. (48)

To solve the equation Hψ = Eψ is equivalent to solve the following equation:

Ĥ

(∑∞
k=0 Pk(E)xk∑∞
l=0 Ql(E)xl

)
= E

(∑∞
k=0 Pk(E)xk∑∞
l=0 Ql(E)xl

)
. (49)

Then the above equation can be transformed into a fourth-order recurrence relation. It reads

Ak

(
Pk

Qk+2

)
+ Bk

(
Pk−1

Qk+1

)
+ Ck

(
Pk−2

Qk

)
+ Dk

(
Pk−3

Qk−1

)
= 0, (50)

where

Ak =
(

k(k − 1) 0
−ω̃ (k + 2)(k + 1)

)
,

Bk =
([

i
(
B − A2

4

)
+ λω̃

]
(k − 1) 0

0
[−λω̃ + i

(
B − A2

4

)]
(k + 1)

)
, (51)

Ck =
(

−D − 1
4

(
B − A2

4

)2 − A(k − 2) − A
2 + E ω̃λ2k(k − 1)

0 −D − 1
4

(
B − A2

4

)2 − Ak + A
2 + E

)

Dk = −2i

(
(k − n − 1) 0

0 (k − n − 1)

)
.

In the present case, the recurrence relations are of fourth order, contrasting with other cases
studied in the literature [12, 15] where they are of third order. Setting ω = ω̃ = 0 the
two recurrence relations decouple and the corresponding equations (e.g. the one for Pk)
correspond to the scalar PT -invariant and QES quartic oscillator. It is also of fourth order;
as a consequence, both P0 and P1 are arbitrary (P0 fixes the normalization) and the other
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Pk, k � 2 are determined recursively. The construction of the QES eigenvalues associated
with this system is not as transparent as in the case of third-order recurrence where a common
factor say Pn factorizes out of the Pk’s, k > n. In the present case, the QES eigenvalues are
obtained by solving the system

Pn(E, P1) = 0, Pn−1(E, P1) = 0, (52)

which is linear in P1. These conditions indeed lead to a truncation of the series for ψ1(x)

defined in (48). Coming back to the full system (i.e. with ω �= 0, ω̃ �= 0), it is easy to see
that Q0,Q1,Q2,Q3 remain arbitrary (Q0 set the normalization). The QES eigenvalues can
be obtained by solving the system

Pn(E,Q1,Q2,Q3) = 0, Pn−1(E,Q1,Q2,Q3) = 0,

Qn+2(E,Q1,Q2,Q3) = 0, Qn+1(E,Q1,Q2,Q3) = 0,
(53)

which turns out to be linear in Q1,Q2,Q3.

6. Conclusions

In this paper, we have proposed a set of simple necessary and sufficient conditions for matrix-
valued operators of a certain type to preserve a vector space of polynomials of fixed degrees.
We have seen that the scalar Razhavi potential admits QES matrix extensions of several
types. We also constructed a QES, matrix-valued PT -invariant Hamiltonian with polynomial
potentials. Finally, by taking this last problem as an example, we have shown that the coupled
differential equations can be transformed into a system coupled recurrence equations of fourth
order.
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